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A ribose-functionalized bpy ligand has been prepared and shown
to give modest diastereomeric excesses of A-[FeLs]** complexes;
interconversion of A and A cations is relatively fast, and in CHCls,
the favored complexes with A- or A-TRISPHAT counterions are
homochiral, (A+A-) or (A+A-). In the case of the A-TRISPHAT
salt, a single diastereomer is observed (de > 96%).

functionality might influence the central or A chirality in
metallostars based upéivi(bpy)s} motifs. We now describe
the synthesis of first generation ribose-functionalized met-
allostars and demonstrate a modest chiral-induction and a
large supramolecular chiral-amplification in this system.
The new electrophilic protected ribofuranose derivaive
was prepared in 55% vyield as a colorless oil by the reaction
of 2-bromoethanol with commercially available 1,2,3,5-

Metallodendrimers and metallostars are versatile and tetraacetyjg-o-ribofuranose in the presence of SaCiAs
increasingly exploited scaffolds used for the preparation of expected, _the su_bstltunon proceedgd with stereoretentllon, and
molecular systems bearing multiple functional ufitsVe the ﬁ—conflgurat!on at the anomeric center was confl_rmed
have been particularly interested in metallostars, in which Y the observation of F (see Scheme 1 for, ring labeling)
the only formal branching is at the core, and any subsequent®S @ singlet a 5.06. The reaction o with 4,4-dihydroxy-
structural development is lineahere has been much effort ~ 2:2-bipyridine in DMF in the presence of XO; gave
devoted to sugar-functionalized dendrimers (“sugar balls”) r|bofuraryosg-functgonahzed ligartin 86% yield as a pale
which have unique physicochemical and biological proper- Yellow 0il. Ligand1® reacted immediately with Feg£#H,0

ties2 although few examples of sugar-functionalized metal- I CHCl2—EtOH to give a bright red solution from which
containing systems have been repoRedPendant chiral-  the red complex [Fa)s][PFq], was isolatetlin 57% yield
after treatment with [NE|[PFs] (Scheme 1). The iron(ll)
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(560 mg, 4.06 mmol) were stirred in dry DMF (10 mL) under fiar

1 h at 75°C. 2-Bromoethyl-2,3,5-triacety}-p-ribofuranoside (517
mg, 1.35 mmol) dissolved in dry DMF (5 mL) was added and the
mixture stirred at 75C for 2 h. Kl (224 mg, 1.35 mmol) was added,

and stirring continued overnight. The solvent was removed in vacuo

and the residue suspended in water (10 mL) and extracted with£CHCI
(3 x 20 mL), and the extracts were dried (i$&y), filtered, and
concentrated in vacudThe crude reside was purified by column
chromatography (Si& CH.Cl,/MeOH(4%)) to givel as a pale yellow
oil (460 mg, 86%). Electrospray HRMS1/z 815.2508 ([M+ Na]*,
calcd 815.2487)%H NMR (CDCls, 500 MHz, 295 K)o 8.47 (H'6, d,
2H, J5.68 Hz), 7.97 (K8, d, 2H,J 2.46), 6.87 (M°, dd, 2H,J 2.58,
5.66 Hz), 5.34 (43, m, 2H), 5.29 (H?, br d, 2H,J 4.9 Hz), 5.12
(HBL, s, 2H), 4.33 (44, m, 2H), 4.33 (H5¥5 m, 2H), 4.29 (M, t,
4H,J 4.5 Hz), 4.18 (H°Y2 dd, 2H,J 5.9, 11.24 Hz), 4.09 (HA®, m,
2H), 3.86 (M2 m, 2H), 2.11 (OAc, s, 6H), 2.08 (OAc, s, 6H), 2.05
(OAc, s, 6H).
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Scheme 1 2 the H*® proton in the A and A diastereomers) was a
AcO O %% ) AN\ O AN maximum of 10% £5%). Although the observation of two
W W ) signals means that the system is in slow exchange otthe
AcO  Ohc AcO OAc NMR time scale (500 MHz, 295 K), ligand exchange is
0 possible in [Fe(bpy]?" systems, which are known to
AcO L e racemize relatively rapidl{? This suggested that we might
o ,° 0, o & . . S .
Y o ot HONS observe a different diastereoselectivity in other solvents in
— N m which ion-pairing effects differ.
AcO OAc \A Y/ \ / AcO OAc . . . . .
NN 1 We hoped that solutions in less coordinating solvents might
)

J(iii show greater diastereoselectivity as intramolecular polar
_ — interactions would be optimized, but we found that in CDCI
oR solution the diastereomeric excess was only slightly higher
(de= 20 & 2% by*H NMR) than in CQXCN solution. The
© addition of CRSOCD; to the CDC} solution results in a
coalescence of the signals of the two diastereomers and the
appearance of fred at high concentrations. We have
observed similar ligand dissociation processes in other iron-
(I) complexes of sugar-functionalized ligands in polar
solvents'! In CHCI;, the complex exhibits in the CD

R spectrum a negative Cotton effect at the higher wavelength
R=2,3,5-tiacetyl-p-D-ribofuranose (Aesgo= —2.7) corresponding to the MLCT band. Both the
[Fe(1)s12* CD and electronic spectra tfare transparent in this region,
0 SnCI, BICH,CH,OH, CH,Cl—MeCN. 55%; (I_I) KoCOs, 4.4- and we can assign the band with confidence_ to an excess of
(HO):bpy, DMF, 86%; (iii) FeC}.4H,0, CHCl,—EtOH, 57%. the A+ compleX? (A+ and A+ refer to the chirality at the

. . . cationic center).
scopic methods and thél NMR spectrum assigned using )

COSY and NOESY techniques. cl
The complex contains a total of 25 stereogenic centers. cl cl
Of these, the 24 in the sugar substituents have defihed o o |
S configuration, and only thé\ or A configuration at the al o. |-.o0
{Fe(bpy}}center is undefined. A single investigation into /P\
SE . ! i al o | o
chiral induction at a metal center with a remote hexose [
. . . . . Cl (e] Cl
functionalized bpy ligand has been reportdd;this case, a
46% diastereomeric excess:(A o-anomerA: A f-anomer) ATRISPHAT c
was observed, with the favored configuration at the metal ¢l

stereogenic center depending upondher -configuration ) ) .
at the hexose. We hoped that by placing the ribose closerto The chiral tris(tetrachlorobenzenediolato)phosphate(V)
the bpy and the metal center, the chiral induction at the metal @nion, known as TRISPHAT, interacts strongly with aromatic
would be proportionately greater. rings such as those found in [Ag{]>" ** and has been used

The'H NMR spectrum of a CECN solution of [Fel)s]- as a chiral §hift reagent for oligopyridine -clomple*éyn
[PF]> showed a doubling of resonances in the aromatic general, a high level of homochiral recognitioh( A-) is
region as expected if two diastereomers are present. Theachieved (dex 96%)"<lts association with diastereomeric
splitting of peaks was most noticeable fof*HHowever, [Fe(1)s]>" moieties was considered, as selective interactions
the splitting of the signals was not great, and the diastere-With either A or A forms of the cationic complex could
omeric excess (estimated from the overlapping signals for potentially occur and overcome, or reinforce, the modest
preference induced by the sugars. With a TRISPHAT anion
(9) [Fe@)s][PFg]2: Solutions ofl (12 mg, 15.2umol) in CHCl,—EtOH of, for instance A_ configuration, if there is a significant

(2 mL, 1:1) and FeGHH,O (1.0 mg, 5.1umol) in EtOH (1 mL) . . -

were mixed, and the red solution was stirred at room temperature for thermodynamic difference between the energies of the

1 h. Treatment with N&PFs gave a red precipitate which was filtered  equilibrating homochiral A+A-) and heterochiral A+A_)
over Celite, washed with water, and redissolved in MeCN. The solvent
was removed in vacuo to give [Fg§][PFe]2 as a red solid in 57%
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Figure 1. 'H NMR spectra of [Fel)s][A-TRISPHATL in (a) 0%, (b)
2%, (c) 5%, (d) 10%, and (e) 20% GBOCD; in CDCls. Peaks marked M
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Figure 2. CD spectra in the region of the MLCT bandis420—-700 nm)
of (a) [(A)-Fe@)s][A-TRISPHATL (de 59%), (b) [(\)-Fe@)s][PFe]2 (de
19%), and (c) [0)-Fe@)s][A-TRISPHATL (de 96%) (1.10x 104 M in
CHCly).

Cotton effect for the salt withh anion (Aesgo = +14.0) than
that for A anion (Aesgp = —8.6). Accordingly, we may

and m refer to major and minor diastereomers, respectively, and the peakscondude that in chloroform solutions the diastereomeric ion

markedi are free ligand observed at high % DMSO.

ion pairs, then a classical Pfeiffer effect will ocd@rand

pairing is sufficiently strong that withA-TRISPHAT] the
solution species is onlyN-Fe(@)3][ A-TRISPHATYL (de 96%

result in an enrichment of one of the two diastereomeric salts. = 2%) and with A-TRISPHAT] the solution species is
The sense of the stereoselective induction and its magnitudePreferentially \-Fe)s][A-TRISPHAT], (de 59%-+ 2%).

strongly depend on the structure of the diimine ligands and We also notice that the Cotton effect valutefg = —2.7)

the polarity of the solven't

The reaction of [Fel)s][PFs]. with [cinchonidinium]-
[A-TRISPHAT] or [BuNH][A-TRISPHAT] followed by
chromatography allowed the isolation of pute TRISPHAT]
and [A-TRISPHAT] salts of the complex. TheH NMR
spectrum of a CDGlsolution of [Fel)s][A-TRISPHATL

for salt [Fe)s][PFe)2 is in complete agreement with the
diastereoselectivity measured by NMR. Interestingly, instead
of reinforcing the natural preference for\a. configuration

at the metal center imposed by the ribose substituents,
A-TRISPHAT leads to a lower selectivity than its enanti-
omer. In the case of thA,A_ homochiral diastereomeric

(Figure 1) exhibited a single solution species (an accidental iOn pair, we propose that secondary supramolecular inter-

degeneracy of the signals for tha,( A-) and A+, A-)
salts in pure chloroform is very unlikely as good NMR

actions between the chiral anion and the sugar substituents
result in a destabilization allowing the presence of signifi-

differentiation of the diastereomeric salts is observed in the cantly moreAA- salt at equilibrium.

presence of DMSO). Upon the addition of €IDCD; to

In conclusion, we have prepared a new ribose-function-

the CDC} solution, there is both a shifting of the peaks and alized ligand and shown that ribose-decorated metallostars
the development of two solution species corresponding to aare obtained in a self-assembly reaction with iron(ll). The
major and a minor diastereomeric ion pair (together with ribose substituents result in a modest chiral induction at the

some ligand dissociation at high @BOCD; concentrations).

This is consistent with a very high diastereoselectivity in
CDCl; through a Pfeiffer effect. We believe that the addition
of DMSO results in a weakening of the electrostatic
interactions within the ion pair and leads to a mixture of

{Fe(bpy}} center, favoring theA,; diastereomer in the
complex [Fel)s][PFe].. As the iron(ll) complexes are
reasonably labile, supramolecular interactions with TRISPHAT
anions in the diastereomeric ion-pairs allow great control
over the configuration of théFe(bpy}} through a Pfeiffer

diastereomers. A similar behavior was observed for the salt effect.

[Fe@)s][ A-TRISPHATYL with, surprisingly, in this case the
presence of the minor diastereomer {29%) in CDC}
only.

Figure 2 shows CD spectra in CHGIf the original Pk~
salt and the salts obtained witkr and A-TRISPHAT. The
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TRISPHAT salts have opposite responses at 580 nm, a region
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